Product Description

Key attributes of CNC Long Rigid Pump Line Flexible Shaft Coupling for Model Shaft Connection
Industry-specific attributes of CNC Long Rigid Pump Line Flexible Shaft Coupling for Model Shaft Connection

CNC Machining or Not Cnc Machining
Material Capabilities Aluminum, Brass, Bronze, Copper, Hardened Metals, Precious Metals, Stainless steel, Steel Alloys

Other attributes of CNC Long Rigid Pump Line Flexible Shaft Coupling for Model Shaft Connection

Place of Origin ZheJiang , China
Type Broaching, DRILLING, Etching / Chemical Machining, Laser Machining, Milling, Other Machining Services, Turning, Wire EDM
Model Number OEM
Brand Name OEM
Material Metal
Process Cnc Machining+deburrs
Surface treatment Customer’s Request
Equipment CNC Machining Centres / Core moving machine / precision lathe / Automatic loading and unloading equipment
Processing Type Milling / Turning / Stamping
OEM/ODM OEM & ODM CNC Milling Turning Machining Service
Drawing Format 2D/(PDF/CAD)3D(IGES/STEP)
Our Service OEM ODM Customers’drawing
Materials Avaliable Stainless Steel / Aluminum / Metals / Copper / Plastic

Best Seller of OEM/ODM Low MOQ Turning Milling Processing CNC Machined Component

 

About YiSheng

Business Type Factory / Manufacturer
Service CNC Machining
Turning and Milling
CNC Turning
OEM Parts
Material 1). Aluminum: AL 6061-T6, 6063, 7075-T etc
2). Stainless steel: 303,304,316L, 17-4(SUS630) etc
3). Steel: 4140, Q235, Q345B,20#,45# etc.
4). Titanium: TA1,TA2/GR2, TA4/GR5, TC4, TC18 etc
5). Brass: C36000 (HPb62), C37700 (HPb59), C26800 (H68), C22000(H90) etc
6). Copper, bronze, Magnesium alloy, Delrin, POM,Acrylic, PC, etc.
Finish Sandblasting, Anodize color, Blackenning, Zinc/Nickl Plating, Polish, 
Power coating, Passivation PVD, Titanium Plating, Electrogalvanizing,
electroplating chromium, electrophoresis, QPQ(Quench-Polish-Quench),
Electro Polishing,Chrome Plating, Knurl, Laser etch Logo, etc.
Main Equipment CNC Machining center, CNC Lathe, precision lathe 
Automatic loading and unloading equipment
Core moving machine
Drawing format STEP,STP,GIS,CAD,PDF,DWG,DXF etc or samples. 
Tolerance +/-0.001mm ~ +/-0.05mm
Surface roughness Ra 0.1~3.2
Test Equipment Complete test lab with Projector, High-low temperature test chamber, Tensile tester
Gauge, Salt fog test
Inspection Complete inspection lab with Micrometer, Optical Comparator, Caliper Vernier,CMM
Depth Caliper Vernier, Universal Protractor, Clock Gauge
Capacity CNC turning work range: φ0.5mm-φ150mm*300mm
CNC center work range: 510mm*850mm*500mm
Core moving machine work range: φ32mm*85mm
Gerenal Tolerance:
(+/-mm)
CNC Machining: 0.005
Core moving: 0.005
Turning: 0.005
Grinding(Flatness/in2): 0.003
ID/OD Grinding: 0.002
Wire-Cutting: 0.002

RFQ of CNC Long Rigid Pump Line Flexible Shaft Coupling for Model Shaft Connection

flexible coupling

What are the torque and speed ratings for different sizes of flexible couplings?

The torque and speed ratings of flexible couplings can vary depending on their size, design, and material. Manufacturers typically provide specifications for each specific coupling model to ensure it is suitable for the intended application. Below are some general considerations regarding torque and speed ratings for different sizes of flexible couplings:

Torque Ratings:

The torque rating of a flexible coupling is the maximum amount of torque it can reliably transmit without experiencing excessive deformation or failure. It is essential to choose a coupling with a torque rating that exceeds the torque requirements of the application to ensure proper operation and avoid premature wear. Torque ratings are typically specified in Nm (Newton-meters) or lb-ft (pound-feet).

The torque capacity of a flexible coupling can increase with its size and design. Larger couplings, which have more substantial components and a larger flexible element, often have higher torque ratings compared to smaller couplings. Additionally, couplings with a more robust design, such as metallic couplings, generally have higher torque capacities compared to elastomeric couplings.

Speed Ratings:

The speed rating of a flexible coupling is the maximum rotational speed it can withstand while maintaining its structural integrity and performance. It is critical to select a coupling with a speed rating suitable for the application’s operating speed to avoid excessive wear and potential coupling failure. Speed ratings are typically specified in revolutions per minute (RPM).

Like torque ratings, the speed rating of a flexible coupling can be influenced by its size, design, and material. Larger couplings with more robust construction can often handle higher rotational speeds compared to smaller couplings. Metallic couplings, with their stiffer and more precise design, can also have higher speed ratings compared to elastomeric couplings.

Consulting Manufacturer Specifications:

To determine the torque and speed ratings for specific sizes of flexible couplings, it is essential to consult the manufacturer’s product specifications or technical datasheets. These documents provide detailed information about the coupling’s capabilities, including torque and speed ratings for each available size and model.

Application Considerations:

When selecting a flexible coupling, it is crucial to consider the torque and speed requirements of the specific application. Factors such as the power transmitted, the rotational speed of the machinery, and any transient or shock loads should be taken into account to ensure the selected coupling can handle the demands of the system.

Summary:

The torque and speed ratings of flexible couplings can vary based on their size, design, and material. Manufacturers provide specific torque and speed ratings for each coupling model to ensure their suitability for different applications. Consulting manufacturer specifications and considering the application’s requirements are vital in selecting the right flexible coupling that can handle the torque and speed demands of the mechanical system.

flexible coupling

Can flexible couplings be used in power generation equipment, such as turbines and generators?

Yes, flexible couplings are commonly used in power generation equipment, including turbines and generators. These critical components of power generation systems require reliable and efficient shaft connections to transfer power from the prime mover (e.g., steam turbine, gas turbine, or internal combustion engine) to the electricity generator.

Flexible couplings play a vital role in power generation equipment for the following reasons:

  • Misalignment Compensation: Power generation machinery often experiences misalignment due to factors like thermal expansion, settling, and foundation shifts. Flexible couplings can accommodate these misalignments, reducing the stress on shafts and minimizing wear on connected components.
  • Vibration Dampening: Turbines and generators can generate significant vibrations during operation. Flexible couplings help dampen these vibrations, reducing the risk of resonance and excessive mechanical stress on the system.
  • Torsional Shock Absorption: Power generation equipment may encounter torsional shocks during startup and shutdown processes. Flexible couplings can absorb and dissipate these shocks, protecting the entire drivetrain from damage.
  • Isolation of High Torque Loads: Some power generation systems may have torque fluctuations during operation. Flexible couplings can isolate these fluctuations, preventing them from propagating to other components.
  • Electrical Isolation: In certain cases, flexible couplings with non-metallic elements can provide electrical isolation, preventing the transmission of electrical currents between shafts.

Power generation applications impose specific requirements on flexible couplings, such as high torque capacity, robust construction, and resistance to environmental factors like temperature and humidity. Different types of flexible couplings, including elastomeric, metallic, and composite couplings, are available to meet the varying demands of power generation equipment.

When selecting a flexible coupling for power generation equipment, engineers must consider factors such as the type of prime mover, torque and speed requirements, operating conditions, and the specific application’s environmental challenges. Consulting with coupling manufacturers and following their engineering recommendations can help ensure the appropriate coupling is chosen for each power generation system.

flexible coupling

Can you explain the different types of flexible coupling designs available?

There are several types of flexible coupling designs available, each with its unique construction and characteristics. These designs are tailored to meet specific application requirements and address different types of misalignment and torque transmission needs. Here are some of the most common types of flexible couplings:

  • Jaw Couplings: Jaw couplings consist of two hubs with curved jaws and an elastomer spider placed between them. The spider acts as a flexible element and can compensate for angular and parallel misalignment. Jaw couplings are widely used in various industrial applications due to their simple design and effectiveness in handling misalignment and vibration damping.
  • Disc Couplings: Disc couplings use thin metallic discs with a series of alternating slits and flanges to connect the shafts. The disc coupling design allows for excellent misalignment compensation, including angular, parallel, and axial misalignment. Disc couplings are known for their high torsional stiffness and precise torque transmission capabilities.
  • Gear Couplings: Gear couplings consist of toothed hubs connected by an external sleeve with gear teeth. They are well-suited for applications with high torque and moderate misalignment. Gear couplings offer good misalignment compensation and high torque capacity, making them popular in heavy-duty industrial applications.
  • Beam Couplings: Beam couplings use a single piece of flexible material, often a metal beam, to connect the shafts. The material’s flexibility allows for angular and axial misalignment compensation. Beam couplings are compact, lightweight, and provide low inertia, making them suitable for applications with high-speed requirements.
  • Bellows Couplings: Bellows couplings consist of a bellows-like flexible structure that connects the two hubs. They can compensate for angular, parallel, and axial misalignment. Bellows couplings are known for their high torsional stiffness and ability to maintain constant velocity transmission.
  • Oldham Couplings: Oldham couplings use three discs, with the middle one having a perpendicular slot. This design allows for angular misalignment compensation while transmitting torque between the hubs. Oldham couplings are often used when electrical isolation between shafts is required.

Each flexible coupling design has its strengths and limitations, and the choice depends on factors such as the application’s torque requirements, misalignment conditions, operating environment, and speed. Proper selection of the coupling type ensures optimal performance, efficiency, and reliability in various mechanical systems and rotating machinery.

China Hot selling Passivating CNC Long Rigid Pump Line Flexible Shaft Coupling for Model Shaft Connection  China Hot selling Passivating CNC Long Rigid Pump Line Flexible Shaft Coupling for Model Shaft Connection
editor by CX 2023-11-28