Product Description

Stainless Steel Grooved Pipe Coupling 2” DN50mm 600psi (4.0Mpa)
 

 1. Available Size: 
  * 
3/4” – 12” ( DN20-DN300mm) 

 2. Maximum Working Pressure : 
 * 600 CZPT ( 40 bar) 
 *  working pressure dependent on material, wall thickness and size of pipe .

3. Application: 
*  
Provides a flexible pipe joint which allows for expansion, contraction and deflection
*  This product joints standard Sch 40S cut grooved pipe  
*  Suit for pipeline medium including cold water, hot water, rare acid, Oil-free air and chemical

4. Material 
  

   Body Material : SS304, SS316, SS316L, SS CE8MN, SS Duplex 2204, SS Duplex 2507 
   Rubber Sealing : EPDM 
   Bolt & Nut :  SS304, SS316 

5.  Dimension Sheet : 
                                                                                                                                                       
    
                                                                                                                           
           Typical for all sizes 

 

Model S30 Stainless Steel Flexible Coupling
Nominal Size Pipe O.D Working Pressure  Pipe End Separation Coupling Dimensions Coupling Bolts
X Y Z Qty Size
mm/inch (mm/inch) (psi/bar) (mm/inch) mm/inch mm/inch mm/inch pcs mm
20           3/4 26.9   1.050 600                          42  0-1.6                  0-0.06 47                   1.850 87                3.425 43              1.693 2 M10x40
25                       1 32            1.260 500            35 0-1.6                  0-0.06 53             2.087 90    3.543 43     1.693 2 M10x45
32               1 1/4 38     1.496 500              35 0-1.6                  0-0.06 58          2.283 94        3.700 44        1.732 2 M10x45
32               1 1/4 42.4   1.660 500             35 0-1.6                  0-0.06 62      2.441 106  4.173 44        1.732 2 M10x45
40                  1 1/2 48.3   1.900 500            35 0-1.6                  0-0.06 67      2.638 106   4.173 43     1.693 2 M10x45
50                      2 57     2.244 500            35 0-1.6                  0-0.06 77       3.031 116   4.567 43    1.693 2 M10x50
50               2 60.3   2.375 500            35 0-1.6                  0-0.06 78            3.071 117    4.606 43     1.693 2 M10x50
65               2 1/2 73        2.875 500             35 0-1.6                  0-0.06 94         3.700 134   5.275 44        1.732 2 M10x50
65               2 1/2 76.1       3.000 500             35 0-1.6                  0-0.06 94         3.700 134   5.275 44        1.732 2 M10x50
80               3 88.9     3.500 500             35 0-1.6                  0-0.06 110         4.330 150   5.905 45       1.771 2 M10x50
100               4 108     4.250 450           31 0-3.2                 0-0.13 135         5.315 184   7.244 47     1.850 2 M12x60
100               4 114   4.500 450           31 0-3.2                 0-0.13 139        5.472 190  7.480 48    1.890 2 M12x60
125               5 133   5.250 400           28 0-3.2                 0-0.13 164        6.456 215   8.465 48    1.890 2 M12x60
125               5 141.3   5.563 400           28 0-3.2                 0-0.13 168       6.614 215   8.465 48    1.890 2 M12x60
150              6 159   6.259 350           25 0-3.2                 0-0.13 190      7.480 240  9.448 49    1.929 2 M12x70
150              6 168.3  6.625 350           25 0-3.2                 0-0.13 198      7.795 246     9.685 49    1.929 2 M12x70
200             8 219.1  8.625 350           25 0-3.2                 0-0.13 253  9.961 318    12.519 57    2.244 2 M12x70
250           10 273   10.750 300           21 0-3.2                 0-0.13 315   12.401 396  15.590 59         2.322 2 M20x110
300            12 323.9  12.750 300           21 0-3.2                 0-0.13 372  14.645 452  17.795 60      2.362 2 M20x110

 

flexible coupling

How do you install and align a flexible coupling properly to ensure optimal performance?

Proper installation and alignment of a flexible coupling are essential to ensure its optimal performance and longevity. Incorrect installation can lead to premature wear, increased vibrations, and potential equipment failure. Below are the steps to install and align a flexible coupling properly:

1. Pre-Installation Inspection:

Before installation, inspect the flexible coupling and its components for any visible damage or defects. Check that the coupling’s size and specifications match the application requirements. Ensure that the shafts and equipment connected to the coupling are clean and free from debris.

2. Shaft Preparation:

Prepare the shafts by removing any oil, grease, or contaminants from the surfaces that will come into contact with the coupling. Ensure that the shaft ends are smooth and free from burrs that could affect the fit of the coupling.

3. Coupling Hub Installation:

Slide the coupling hubs onto the shafts, ensuring they are positioned securely and evenly on each shaft. Use a lubricant recommended by the manufacturer to facilitate the installation and ensure a proper fit.

4. Alignment:

Proper alignment is critical for the performance and longevity of the flexible coupling. Align the shafts by checking both angular and parallel misalignment. Utilize precision alignment tools, such as dial indicators or laser alignment systems, to achieve accurate alignment. Follow the manufacturer’s alignment specifications and tolerance limits.

5. Tightening Fasteners:

Once the shafts are properly aligned, tighten the coupling’s fasteners to the manufacturer’s recommended torque values. Gradually tighten the fasteners in a cross pattern to ensure even distribution of the load on the coupling hubs. Avoid over-tightening, as it may cause distortion or damage to the coupling.

6. Run-Out Check:

After installation, perform a run-out check to verify that the coupling’s rotating components are balanced and aligned. Excessive run-out can lead to vibrations and reduce the coupling’s performance. If significant run-out is detected, recheck the alignment and address any issues that may be causing it.

7. Lubrication:

Ensure that the flexible coupling is adequately lubricated, following the manufacturer’s recommendations. Proper lubrication reduces friction and wear, enhancing the coupling’s efficiency and reliability.

8. Periodic Inspection and Maintenance:

Regularly inspect the flexible coupling for signs of wear, misalignment, or damage. Address any issues promptly to prevent further problems. Depending on the coupling type and application, scheduled maintenance may include re-greasing, re-alignment, or replacing worn components.

Summary:

Proper installation and alignment are crucial for ensuring the optimal performance and longevity of a flexible coupling. Following the manufacturer’s guidelines, inspecting the components, achieving accurate alignment, and using the appropriate lubrication are key steps in the installation process. Regular inspection and maintenance help to identify and address potential issues, ensuring the coupling continues to operate smoothly and efficiently in the mechanical system.

flexible coupling

Can flexible couplings be used in high-temperature environments, such as furnaces and kilns?

Flexible couplings can be used in high-temperature environments, such as furnaces and kilns, but the selection of the appropriate coupling is crucial to ensure reliable performance and longevity under these extreme conditions. Here are some key considerations:

  • Material Selection: The choice of materials is critical when using flexible couplings in high-temperature applications. Look for couplings made from heat-resistant materials that can withstand the elevated temperatures without experiencing significant degradation. Common materials used for high-temperature couplings include stainless steel, high-temperature alloys, and certain types of elastomers designed for heat resistance.
  • Lubrication: High temperatures can cause lubricants to break down or evaporate more quickly. Some flexible couplings may require specialized high-temperature lubricants to ensure smooth operation and reduce wear at elevated temperatures. Check the manufacturer’s recommendations for lubrication in high-temperature environments.
  • Thermal Expansion: In high-temperature applications, the equipment and shafts may experience thermal expansion, leading to misalignment. Flexible couplings with higher misalignment capabilities may be necessary to accommodate these thermal effects and prevent additional stress on the system.
  • Torsional Stiffness: Consider the required torsional stiffness for the specific application. In high-temperature environments, couplings may experience changes in stiffness due to temperature variations. It is essential to choose a coupling with appropriate torsional characteristics for the intended operating temperature range.
  • Application Specifics: Evaluate the specific operating conditions of the furnace or kiln, including the maximum and fluctuating temperatures, vibration levels, and potential exposure to chemicals or other harsh elements. Choose a coupling that can withstand these conditions without compromising performance or safety.
  • Coupling Type: Different types of flexible couplings offer varying degrees of heat resistance and performance capabilities. For example, certain types of disc couplings or metal bellows couplings are more suitable for high-temperature environments due to their robust construction and resistance to heat.
  • Regular Maintenance: In high-temperature applications, couplings may be subject to more stress and wear. Regular inspection and maintenance are essential to monitor the coupling’s condition, lubrication, and alignment to ensure it continues to function optimally in the challenging environment.

Overall, flexible couplings can be utilized in high-temperature environments, but it is vital to choose a coupling specifically designed and rated for these conditions. Working closely with coupling manufacturers and considering the specific demands of the application will help ensure that the selected coupling can handle the challenges posed by furnaces, kilns, and other high-temperature equipment, providing reliable power transmission and contributing to the overall efficiency and safety of the system.

flexible coupling

Are there any safety considerations when using flexible couplings in rotating machinery?

Yes, there are several safety considerations to keep in mind when using flexible couplings in rotating machinery. While flexible couplings offer numerous benefits in terms of misalignment compensation, vibration isolation, and shock absorption, improper use or maintenance can lead to safety hazards. Here are some important safety considerations:

  • Proper Installation: Ensure that the flexible coupling is installed correctly and securely following the manufacturer’s guidelines. Improper installation can lead to coupling failure, unexpected disconnection, or ejection of coupling components, which may result in equipment damage or injury to personnel.
  • Alignment: Proper shaft alignment is essential for the reliable and safe operation of flexible couplings. Misaligned shafts can cause excessive stress on the coupling and connected components, leading to premature wear and possible failure. Regularly check and maintain proper shaft alignment to prevent safety risks.
  • Operating Conditions: Consider the environmental and operating conditions of the machinery when selecting a flexible coupling. Some couplings are designed for specific temperature ranges, hazardous environments, or corrosive atmospheres. Using a coupling that is not suitable for the operating conditions can compromise safety and performance.
  • Torque and Speed Limits: Always operate the flexible coupling within its specified torque and speed limits. Exceeding these limits can cause coupling failure, leading to unexpected downtime, equipment damage, and potential safety hazards.
  • Maintenance: Regularly inspect and maintain the flexible coupling to ensure its continued safe operation. Check for signs of wear, damage, or corrosion, and promptly replace any worn or damaged components with genuine parts from the manufacturer.
  • Emergency Stop Mechanism: In applications where safety is critical, consider implementing an emergency stop mechanism to quickly halt machinery operation in case of coupling failure or other emergencies.
  • Personal Protective Equipment (PPE): When working with rotating machinery or during maintenance tasks involving couplings, personnel should wear appropriate PPE, such as gloves, eye protection, and clothing that can resist entanglement hazards.
  • Training and Awareness: Ensure that personnel working with the machinery understand the potential hazards associated with flexible couplings and receive proper training on safe handling, installation, and maintenance procedures.

By adhering to these safety considerations, operators and maintenance personnel can mitigate potential risks and ensure the safe and reliable operation of rotating machinery with flexible couplings. Additionally, it is essential to comply with relevant safety standards and regulations specific to the industry and application to ensure a safe working environment.

China Professional 2′ ′ 500psi Stainless Steel Grooved Flexible Coupling in Stock  China Professional 2′ ′ 500psi Stainless Steel Grooved Flexible Coupling in Stock
editor by CX 2023-08-14