Product Description

hydraulic flexible coupling

Specification:

PART NO THREAD E HOSE BORE DIMHangZhouONS
DN DASH A C S2
24211-04-04 9/16″×18 6 04 22.5 8.5 19
24211-04-05 9/16″×18 8 05 22.5 8.5 19
24211-04-06 9/16″×18 10 06 22.5 8.5 19
24211-06-04T 11/16″×16 6 04 23.5 10 22
24211-06-05T 11/16″×16 8 05 23.5 10 22
24211-06-06 11/16″×16 10 06 25.5 10 22
24211-06-08 11/16″×16 12 08 26 10 22
24211-08-05T 13/16″×16 8 05 25 11 27
24211-08-06T 13/16″×16 10 06 25 11 27
24211-08-08 13/16″×16 12 08 28 11 27
24211-08-10 13/16″×16 16 10 29 11 27
24211-10-08T 1″×14 12 08 29.5 11 30
24211-10-10T 1″×14 16 10 33.5 11 30
24211-10-12 1″×14 20 12 33.5 11 30
24211-12-08T 1.3/16″×12 12 08 30.5 12 36
24211-12-10T 1.3/16″×12 16 10 31.5 12 36
24211-12-12T 1.3/16″×12 20 12 33 12 36
24211-12-12 1.3/16″×12 20 12 35 12 36
24211-12-16 1.3/16″×12 25 16 36 12 36
24211-16-12T 1.7/16″×12 20 12 35 14.8 41
24211-16-14T 1.7/16″×12 22 14 34 14.8 41
24211-16-16T 1.7/16″×12 25 16 35 14.8 41
24211-16-20 1.7/16″×12 32 20 39.5 14.8 41
24211-20-16T 1.11/16″×12 25 16 35 15 50
24211-20-20W 1.11/16″×12 32 20 39.5 15 50
24211-20-24W 1.11/16″×12 40 24 39.5 15 50
24211-24-20T 2″×12 32 20 36 14.8 60
24211-24-24T 2″×12 40 24 36 14.8 60

The material  are always carbon steel, stainless steel or brass, and the material can be customized.

The surface of the ferrules are smooth, zinc plating or others customized.

Features:
High functionality
Precise design
Durable

carbon material:

Plant:

Warehouse:

Other products:

Swaged Metric Fittings Mertic Flat Seal Fittings 
Metric Multiseal Fittings
Metric 60°Cone Seal Fittings 
Metric 74°Cone Seal Fittings
Metric 24°Cone O-RING Seal L..T Fittings
Metric 24°Cone O-RING Seal H.T.Fittings
Metric Standpipe Straight Fittings
JIS Metric 60°Cone Seal Fitting
Swaged British Fittings BSP O-RING Seal Fittings 
BSP Flat Seal Fittings
BSP Multiseal Fittings
BSP 60°Cone Seal Fittings
BSPT Fittings
JIS BSP 60°Cone Seal Fittings
Swaged American Fittings SAE O-RING Seal Fittings 
ORFS Flat Seal Fittings
NPSM 60°Cone Seal Fittings
JIC 74°Cone Seal Fittings
NPT Fittings SAE Flange L.T. Fittiings
SAE Flange H.T.Fittings
Staplelok Fittings Banjo Double connection 
interlock Hose Fittings
Ferrule FERRULE for SAE100R1AT/ EN 853 1SN HOSE
FERRULE for SAE100R1A EN 853 1ST HOSE
FERRULE for SAE100R2AT/DIN20571 2SN HOSE
FERRULE for SAE100R2A/EN 853 2SN HOSE
FERRULE for SAE100R1AT-R2AT,EN853 1SN-2SN and EN 857 2SC
FERRULE for 4SP,4SH/10-16,R12-06-16 HOSE
FERRULE for 4SH,R12/32 HOSE
Metric Adapters Metric Thread O-RING Face Seal Adapters
Metric Thread Bite Type Tube Adapters
JIS Metric Thread 60°Cone Adapters
Metric Thread 74°Cone Flared Tube Adapters
British Adapters BSP Thread 60°Cone Adapters
JIS BSP Thread 60°Cone Adapters
BSPT Thread Adapters
American Adapters ORFS Adapters JIC 74°Cone Flared Tube Adapters
NPT Thread Adapters

We carries a wide variety of hydraulic hose ferrule fittings in common size,used mainly for crimping hose fittings.More other type ferrule,fitting and hose please feel free to contact with us.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

What are the key features to look for when purchasing a flexible coupling?

When purchasing a flexible coupling, several key features should be considered to ensure it meets the specific requirements of the application and provides reliable performance. The following are the key features to look for:

  • 1. Type of Coupling: There are different types of flexible couplings available, such as jaw couplings, beam couplings, bellows couplings, disc couplings, and more. Each type has its advantages and limitations, so choosing the right type depends on factors like misalignment compensation needed, torque capacity, and application requirements.
  • 2. Material: The material of the coupling is crucial for its durability and performance. Common materials include stainless steel, aluminum, steel, and various elastomers. Select a material that can withstand the environmental conditions, loads, and temperature ranges of the application.
  • 3. Size and Dimensions: Ensure that the coupling’s size and dimensions match the shaft sizes and available space in the system. Oversized or undersized couplings may lead to inefficiencies, misalignment, and reduced performance.
  • 4. Torque Rating: Consider the maximum torque the coupling can handle to ensure it can transmit the required power without failure or damage.
  • 5. Speed Rating: Check the coupling’s maximum rotational speed capability to ensure it can handle the desired operating speed without issues.
  • 6. Misalignment Compensation: Different couplings offer varying degrees of misalignment compensation, such as angular, parallel, and axial misalignment. Choose a coupling that can accommodate the expected misalignments in the system.
  • 7. Backlash: For precision applications, consider couplings with minimal or zero-backlash to prevent motion inaccuracies and ensure precise positioning.
  • 8. Operating Environment: Assess the environmental conditions, including temperature, humidity, dust, and chemical exposure, and select a coupling with suitable resistance to these factors.
  • 9. Maintenance: Decide whether maintenance-free couplings or those requiring periodic lubrication align better with the application’s requirements and maintenance schedule.
  • 10. Electrical Isolation: If required, choose couplings with electrical isolation features to prevent current flow between connected shafts.
  • 11. Dynamic Behavior: Evaluate the coupling’s dynamic performance, including resonance and damping characteristics, to ensure smooth operation under various loads and speeds.
  • 12. Application Compatibility: Verify that the selected coupling is suitable for the specific application, such as pumps, compressors, robotics, automation, or other industrial processes.

Summary: When purchasing a flexible coupling, consider factors such as the type of coupling, material, size, torque rating, speed rating, misalignment compensation, backlash, operating environment, maintenance, electrical isolation, dynamic behavior, and application compatibility. Careful consideration of these features will ensure that the coupling meets the demands of the application, provides reliable performance, and contributes to the overall efficiency of the mechanical system.

flexible coupling

Can flexible couplings accommodate both radial and axial loads simultaneously?

Yes, flexible couplings are designed to accommodate both radial and axial loads simultaneously, making them versatile for various mechanical systems. The ability to handle these loads is one of the key advantages of using flexible couplings in power transmission applications. Here’s how they manage both types of loads:

  • Radial Loads: Radial loads act perpendicular to the shaft’s axis and can arise from forces that are not in line with the shaft, such as belt tension or bearing loads. Flexible couplings can handle radial loads due to their flexibility and ability to bend or deform slightly, redistributing the radial forces and minimizing the impact on the connected equipment.
  • Axial Loads: Axial loads act along the shaft’s axis and are common in applications with thrust forces or axial movements. Flexible couplings can accommodate axial loads through their axial flexibility, allowing slight axial displacement without transmitting excessive forces to the connected components.
  • Angular Misalignment: Besides radial and axial loads, flexible couplings can also handle angular misalignment between the shafts. Angular misalignment occurs when the shafts are not perfectly aligned, and flexible couplings can compensate for this misalignment, reducing wear and stress on the connected machinery.

By accommodating both radial and axial loads, flexible couplings help prevent premature wear, reduce the risk of equipment damage, and contribute to smoother and more efficient power transmission. When selecting a flexible coupling for an application, it is essential to consider the expected radial and axial loads, as well as the required level of misalignment compensation to ensure optimal performance and longevity of the coupling and the connected equipment.

flexible coupling

Are there any limitations or disadvantages of using flexible couplings?

While flexible couplings offer numerous advantages, they do come with some limitations and disadvantages that should be considered when selecting them for specific applications. Here are some of the common limitations and disadvantages of using flexible couplings:

  • Torsional Stiffness: Flexible couplings provide some level of torsional flexibility, which is advantageous in many applications. However, in systems that require high precision and minimal angular deflection, the inherent flexibility of the coupling may not be suitable. In such cases, a rigid coupling may be more appropriate.
  • Limitation in High-Torque Applications: While some flexible couplings can handle moderate to high torque levels, they may not be as well-suited for extremely high-torque applications. In such cases, specialized couplings, such as gear couplings, may be required to handle the high torque demands.
  • Temperature Limitations: The performance of certain flexible coupling materials, especially elastomers and plastics, may be affected by extreme temperature conditions. High temperatures can lead to premature wear and reduced lifespan of the coupling, while low temperatures may result in reduced flexibility and potential brittleness.
  • Chemical Compatibility: Certain flexible coupling materials may not be compatible with certain chemicals or substances present in the application’s environment. Exposure to chemicals can cause degradation or corrosion of the coupling material, affecting its performance and lifespan.
  • Installation and Alignment: Flexible couplings require proper installation and alignment to function effectively. If not installed correctly, misalignment issues may persist, leading to premature wear and reduced performance. Aligning the shafts accurately can be time-consuming and may require specialized equipment and expertise.
  • Cost: In some cases, flexible couplings may be more expensive than rigid couplings due to their more complex design and use of specialized materials. However, the cost difference is often justified by the benefits they offer in terms of misalignment compensation and vibration damping.
  • Service Life: The service life of a flexible coupling can vary depending on the application’s conditions and the quality of the coupling. Regular maintenance and timely replacement of worn or damaged parts are essential to ensure the coupling’s longevity and prevent unexpected failures.

Despite these limitations, flexible couplings remain highly valuable components in a wide range of applications, providing efficient torque transmission and compensating for misalignment. Proper selection, installation, and maintenance can help mitigate many of the disadvantages associated with flexible couplings, ensuring their reliable and long-lasting performance in various mechanical systems.

China best Hydraulic Flexible Coupling  China best Hydraulic Flexible Coupling
editor by CX 2024-05-15