Product Description

Nylon Sleeve Gear Coupling
 
Curved-tooth Coupling / Coupling BoWex
 Ubet Nylon Sleeve Couplings flexible shaft connections for a positive torque transmission and specifically suitable to compensate for axial,  radial and angular shaft misalignment.

Ubet Nylon Sleeve Couplings are compact and require no lubrication. They are adapted to many applications including vertical and blind installations. They operate over a wide range of temperature at speed up to 5,000 RPM.  This type of coupling is widely used in application such as Motor, Generator and Pump etc.
 

Features:
l  Nylon-steel combined, maintenance free
l  Compensation for axial, radial and angular misalignment
l  Convenient axial plugging assembly
l  Without bolts, pins, flanges to affect balance or safety
l  No requirement of lubrication
l  Excellent electrical insulation
l  Can be vertically or horizontally assembled
l  Tolerance of finished bore in appliance with ISOH7
 

l  tem No. l  Item No. l  Finished bore range l  Outside Diameter l  Nominal Torque Nm
l  UTNL-14 l  UTNL-14-L l  6-14 l  40 l  10
l  UTNL-19 l  UTNL-19-L l  8-19 l  48 l  16
l  UTNL-24 l  UTNL-24-L l  10-24 l  52 l  20
l  UTNL-28 l  UTNL-28-L l  10-28 l  66 l  45
l  UTNL-32 l  UTNL-32-L l  12-32 l  76 l  60
l  UTNL-38 l  UTNL-38-L l  14-38 l  83 l  80
l  UTNL-42 l  UTNL-42-L l  20-42 l  95 l  100
l  UTNL-48 l  UTNL-48-L l  20-48 l  114 l  140
l  UTNL-55 l  UTNL-55-L l  25-55 l  132 l  240
l  UTNL-65 l  UTNL-65-L l  25-65 l  175 l  380

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible gear coupling

Maintenance Requirements for Flexible Gear Couplings

To extend the lifespan and ensure optimal performance of flexible gear couplings, regular maintenance is essential. Here are the key maintenance requirements:

  • Lubrication: Proper lubrication is crucial for flexible gear couplings. Regularly inspect the coupling’s lubrication system and ensure it is filled with the recommended lubricant. Adequate lubrication reduces friction, wear, and heat generation, leading to smoother operation and increased lifespan.
  • Inspection: Regularly inspect the flexible gear coupling for signs of wear, damage, or misalignment. Look for unusual vibrations, noise, or temperature increases during operation, as these may indicate issues that need attention.
  • Torque Monitoring: Periodically check the torque levels to ensure they are within the coupling’s specified limits. Overloading the coupling can lead to premature wear and failure.
  • Bolt Tightening: Check and tighten the coupling bolts as needed. Vibrations and continuous operation can cause bolts to loosen over time, affecting the coupling’s performance.
  • Alignment: If misalignment is detected during inspection, address it promptly. Proper shaft alignment is crucial for the coupling’s longevity and smooth operation.
  • Environmental Considerations: Be mindful of the operating environment. In harsh conditions, such as corrosive or high-temperature environments, additional protective measures may be necessary to safeguard the coupling’s integrity.

Following these maintenance practices will help prevent premature wear, reduce downtime, and extend the lifespan of flexible gear couplings, ensuring reliable and efficient power transmission in the long run.

flexible gear coupling

Real-World Case Studies of Flexible Gear Couplings in Engineering Projects

Flexible gear couplings have been successfully implemented in various engineering projects across different industries. Here are some real-world case studies showcasing their benefits:

  1. Steel Rolling Mill: In a steel rolling mill, flexible gear couplings were used to connect the main drive motor to the rolling mill’s gearbox. The couplings accommodated the misalignment between the motor and gearbox shafts, reducing vibration and noise during operation. The flexibility of the gear teeth helped protect the gearbox from shock loads caused by changes in the rolling load, extending the gearbox’s lifespan and ensuring smooth and reliable power transmission.
  2. Paper Manufacturing Plant: A paper manufacturing plant utilized flexible gear couplings in their pulp processing equipment. The couplings’ ability to compensate for both angular and parallel misalignments allowed for easier installation and alignment of the equipment. The coupling’s torsional flexibility ensured constant velocity transmission, critical for maintaining consistent paper quality during the production process. Additionally, the damping effect of the gear teeth reduced vibrations, minimizing wear and tear on the machinery and improving overall equipment reliability.
  3. Wastewater Treatment Plant: At a wastewater treatment plant, flexible gear couplings were employed in the aeration system. The couplings helped absorb shock loads from the aeration process, protecting the blowers and motors from potential damage. Their flexibility allowed the coupling to handle misalignments caused by settling of the foundation over time. This resulted in reduced maintenance downtime and increased overall efficiency of the treatment plant.
  4. Wind Turbine Application: Wind turbines utilized flexible gear couplings to connect the low-speed shaft to the high-speed shaft. The coupling’s flexibility allowed for efficient transmission of torque despite the dynamic wind load fluctuations. This flexibility also provided overload protection during extreme wind conditions, safeguarding the turbine’s mechanical components from damage. The coupling’s ability to dampen vibrations contributed to the turbine’s smooth operation, reducing wear and tear and maintenance costs.

These case studies demonstrate the versatility and effectiveness of flexible gear couplings in various engineering applications, showcasing their ability to enhance performance, reduce maintenance, and improve the reliability of critical systems.

flexible gear coupling

Advantages of Flexible Gear Couplings

Flexible gear couplings offer several advantages over other types of couplings:

  1. Misalignment Compensation: Flexible gear couplings can accommodate angular, parallel, and axial misalignments between the connected shafts. This ability to compensate for misalignment reduces stress on the machinery, shafts, and bearings, leading to improved overall system reliability and reduced maintenance requirements.
  2. Vibration Damping: The elastomeric flexible element in the coupling acts as a damping mechanism, absorbing vibrations and shocks during operation. This feature helps in reducing noise levels and protecting the connected equipment from damage caused by excessive vibrations.
  3. High Torque Transmission: Flexible gear couplings are designed to handle high torque loads, making them suitable for heavy-duty applications in various industries.
  4. Compact Design: Compared to some other types of couplings, flexible gear couplings have a relatively compact design, making them suitable for applications with space constraints.
  5. Easy Installation and Maintenance: The simple design and flexible nature of these couplings make them easy to install and maintain, minimizing downtime and associated costs.
  6. Reliability: Flexible gear couplings are known for their reliability and long service life, ensuring uninterrupted power transmission in critical industrial processes.
  7. Torsional Flexibility: The elastomeric material used in the coupling provides high torsional flexibility, enabling smooth torque transmission even in applications with varying loads and speeds.

Overall, the advantages of flexible gear couplings make them a popular choice for power transmission systems in various industries, including mining, steel, paper, and chemical processing, where the demands for performance, reliability, and durability are essential.

China factory Flexible Gear Coupling for Motor, Generator or Pump  China factory Flexible Gear Coupling for Motor, Generator or Pump
editor by CX 2024-04-10